Posttranscriptional regulation of ferritin during nodule development in soybean.

نویسندگان

  • Y Kimata
  • E C Theil
چکیده

During soybean (Glycine max) nodule development, induced ferritin mRNA concentration remains elevated while the protein concentration decreases 4- to 5-fold (M. Ragland and E.C. Theil [1993] Plant Mol Biol 21: 555-560). Investigation of posttranscriptional regulation of nodule ferritin during development showed that ferritin mRNA was efficiently translated based on polyribosome size in vivo, protein synthesis (0.8% of total protein) in vitro, and protein synthesis in intact nodules. Ferritin, a plastid protein, was processed in both immature and mature nodules. In chimeric mRNA, soybean ferritin mRNA sequences blocked the function of the iron regulatory element (IRE), the cis regulatory element of animal ferritin mRNA; the IRE regulates chimeric animal mRNAs. The absence of translational regulation of ferritin in plants contrasts with ferritin regulation in animals. Thus, ferritin regulation has diverged during evolution, whereas structure of the mature protein has been conserved. Ferritin in mature soybean nodules is apparently regulated after translation, possibly in analogy with such plastid proteins as chlorophyll-binding proteins D1, CP43, LHCI, and LHCII, the small subunit of ribulose-bisphosphate carboxylase, and apoplastocyanin. An autocatalytic mechanism observed in vivo for degradation of plastid protein D1 and in vitro for pea ferritin during iron release could explain the ferritin decreases in mature nodules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation.

MicroRNAs (miRNAs) are important regulators of plant growth and development. Previously, we identified a group of conserved and novel miRNA families from soybean (Glycine max) roots. Many of these miRNAs are specifically induced during soybean-Bradyrhizobium japonicum interactions. Here, we examined the gene expression levels of six families of novel miRNAs and investigated their functions in n...

متن کامل

Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development.

Nodulation is the result of a symbiosis between legumes and rhizobial bacteria in soil. This symbiosis is mutually beneficial, with the bacteria providing a source of nitrogen to the host while the plant supplies carbon to the symbiont. Nodule development is a complex process that is tightly regulated in the host plant cell through networks of gene expression. In order to examine this regulatio...

متن کامل

Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean.

Signaling pathways mediated by heterotrimeric G-protein complexes comprising Gα, Gβ, and Gγ subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gβ and Gγ proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor ...

متن کامل

Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation.

MicroRNAs are noncoding RNAs that act as master regulators to modulate various biological processes by posttranscriptionally repressing their target genes. Repression of their target mRNA(s) can modulate signaling cascades and subsequent cellular events. Recently, a role for miR172 in soybean (Glycine max) nodulation has been described; however, the molecular mechanism through which miR172 acts...

متن کامل

Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels.

We investigated soybean seed protein gene transcription during development. We found that seed protein genes are transcriptionally activated and then repressed during embryogenesis and that these genes are either inactive or transcribed at low levels in the mature plant. We further observed that genes encoding mRNAs with vastly different prevalences are transcribed at similar rates. DNA gel blo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 1994